A novel semisynthetic inhibitor of the FRB domain of mammalian target of rapamycin blocks proliferation and triggers apoptosis in chemoresistant prostate cancer cells.

نویسندگان

  • Samy A F Morad
  • Maximilian Schmid
  • Berthold Büchele
  • Hans-Ullrich Siehl
  • Menna El Gafaary
  • Oleg Lunov
  • Tatiana Syrovets
  • Thomas Simmet
چکیده

The mammalian target of rapamycin (mTOR) is a key regulator of cell growth and its uncontrolled activation is a hallmark of cancer. Moreover, mTOR activation has been implicated in the resistance of cancer cells to many anticancer drugs, rendering this pathway a promising pharmacotherapeutic target. Here we explored the capability of a semisynthetic compound to intercept mTOR signaling. We synthesized and chemically characterized a novel, semisynthetic triterpenoid derivative, 3-cinnamoyl-11-keto-β-boswellic acid (C-KβBA). Its pharmacodynamic effects on mTOR and several other signaling pathways were assessed in a number of prostate and breast cancer cell lines as well as in normal prostate epithelial cells. C-KβBA exhibits specific antiproliferative and proapoptotic effects in cancer cell lines in vitro as well as in PC-3 prostate cancer xenografts in vivo. Mechanistically, the compound significantly inhibits the cap-dependent transition machinery, decreases expression of eukaryotic translation initiation factor 4E and cyclin D1, and induces G(1) cell-cycle arrest. In contrast to conventional mTOR inhibitors, C-KβBA downregulates the phosphorylation of p70 ribosomal S6 kinase, the major downstream target of mTOR complex 1, without concomitant activation of mTOR complex 2/Akt and extracellular signal-regulated kinase pathways, and independently of protein phosphatase 2A, liver kinase B1/AMP-activated protein kinase/tuberous sclerosis complex, and F12-protein binding. At the molecular level, the compound binds to the FKBP12-rapamycin-binding domain of mTOR with high affinity, thereby competing with the endogenous mTOR activator phosphatidic acid. C-KβBA represents a new type of proapoptotic mTOR inhibitor that, due to its special mechanistic profile, might overcome the therapeutic drawbacks of conventional mTOR inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PI3K and mTOR inhibitor, NVP-BEZ235, is more toxic than X-rays in prostate cancer cells

Background: Radiotherapy and adjuvant androgen deprivation therapy have historically been the first treatment choices for prostate cancer but treatment resistance often limits the capacity to effectively manage the disease. Therefore, alternative therapeutic approaches are needed. Here, the efficacies of radiotherapy and targeting the pro-survival cell signaling components epidermal growth fact...

متن کامل

Rapamycin Inhibits Expansion of Cord Blood Derived NK and T Cell

Background: The mammalian target of rapamycin (mTOR) is important in hematopoiesis. Despite the central role of mTOR in regulating the differentiation of immune cells, the effect of mTOR function on cord blood mononuclear cells is yet to be defined. Objectives: To evaluate the effect of mTOR inhibition, using rapamycin on the proliferation and apoptosis of cord blood mononuclear cells, as well ...

متن کامل

Novel Poly(Adenosine Diphosphate-Ribose) Polymerase (PARP) Inhibitor, AZD2461, Down-Regulates VEGF and Induces Apoptosis in Prostate Cancer Cells

Background: Prostate cancer (Pca) is a heterogeneous disease, and current treatments are not based on molecular stratification. Poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors have recently been found to be remarkably toxic to cells with defects in homologous recombination, particularly cells with BRCA-mutated backgrounds. Therefore, this preliminary study was designed to ...

متن کامل

P162: Emerging Perspectives on Mtor-Associated Inflammation in Neurodegenerative Diseases

Inflammatory processes have been shown to be involved in development and progression of neurodegenerative diseases. Mammalian target of rapamycin (mTOR) involves in various cellular processes including autophagy, apoptosis and energy metabolism. Recently, studies have been shown an association between mTOR pathway and inflammation, supporting the role of the pathway in the pathogenesis of infla...

متن کامل

Mir-55 inhibition can reduce cell proliferation and induce apoptosis in Jurkat (Acute T cell Leukemia) cell line

Background MicroRNAs are small and non-coding RNA molecules with approximately 22 nt in length that cause inhibition of translation or degradation of mRNA. MiR-155 is a kind of molecule with different functions, such as its role in proliferation, apoptosis, inflammation, differentiation, and immunity. One of its best known functions is apoptosis that affects on caspase-3 activity. The main aim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 83 2  شماره 

صفحات  -

تاریخ انتشار 2013